Python编程详解

这个章节将会选取BMNNSDK2中的SSD检测算法作为示例(examples/SSD_object/py_ffmpeg_bmcv_sail), 来介绍python接口编程。在进行python编程介绍前有必要先阅读Sophon_Inference_zh.pdf中2.1节对sail封装的几个类的介绍。

本章主要介绍以下三点内容:

  • 加载模型

  • 预处理

  • 推理

1. 加载模型

import sophon.sail as sail
engine = sail.Engine(0)
engine.load(bmodel_path)

2. 预处理

class PreProcessor:
  def __init__(self, bmcv, scale):
    self.bmcv  = bmcv
    self.ab    = [x * scale for x in [1, -123, 1, -117, 1, -104]]

  def process(self, input, output):
    tmp = self.bmcv.vpp_resize(input, 300, 300)
    self.bmcv.convert_to(tmp, output, ((self.ab[0], self.ab[1]), (self.ab[2], self.ab[3]), (self.ab[4], self.ab[5])))

bmcv = sail.Bmcv(handle)   #图形处理加速模块
scale = engine.get_input_scale(graph_name, input_name)
pre_processor = PreProcessor(bmcv, scale)  #预处理初始化

img0 = decoder.read(handle)            #解码视频输出image
img1 = bmcv.tensor_to_bm_image(input)  #将推理的输入地址挂载到image

pre_processor.process(img0, img1)      #预处理

3. 推理

graph_name = engine.get_graph_names()[0]
engine.set_io_mode(graph_name, sail.IOMode.SYSO)

input_name   = engine.get_input_names(graph_name)[0]
output_name  = engine.get_output_names(graph_name)[0]

input_shape  = [1, 3, 300, 300]
output_shape = [1, 1, 200, 7]

handle = engine.get_handle()

input_dtype  = engine.get_input_dtype(graph_name, input_name)
output_dtype = engine.get_output_dtype(graph_name, output_name)

input  = sail.Tensor(handle, input_shape,  input_dtype,  False, True)
output = sail.Tensor(handle, output_shape, output_dtype, True,  True)

input_tensors  = { input_name:  input  }
output_tensors = { output_name: output }
...
#此处省略 解码,预处理 代码
...
engine.process(graph_name, input_tensors, output_tensors) #推理
out = output.asnumpy()

dets = post_processor.process(out, img0.width(), img0.height())  #后处理
...

Last updated